AP	Test	Cha	pters	7-9
Oc	tober	201	0	

	Kan	
Name:_	Rey	
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

PART	I (20 QUES	TIONS	- 60 PO	INTS)								
Questi	ons 1 - 2: C	hoose	from the	e follow	ing ans	wers:						
	A) 1s ² 2s ² B) 1s ² 2s ² C) 1s ² 2s ² D) 1s ² 2s ² E) 1s ² 2s ²	2p ⁶ 3s 2p ⁶ 3s 2p ⁶ 3s 2p ⁶ 2c 2p ⁶ 3s	² 3p ⁶ ² 3p ⁶ 4s ² 3p ⁶ 3c ¹⁰ 3s ² 3 ² 3p ⁶ 4s	p ⁶ 2 3d ³			žì.					
<u>E</u> 1.	Which is a	ground	state co	onfigura	ation for	r an ator	n of a tra	ansition r	netal?			
Λ	Which is th									ıl?		
B 3. from n	What is the = 5 to n=3? A)		ength of 10 ⁵ m 10 ⁻⁶ m 10 ⁻¹⁹ m		at is en	nitted wl	nen an e	D) 8.21	ectron ir x 10 ⁻⁷ n		E5 =	atom falls 8.712×10 2.42×10 149×10
E4	C) Which of the electrons?				vis dot s		E=hv showing	E: h	X	1 =	120	ما ۔ .
<u>E</u> 5.	A) The hybrid A)	Cl ₂ ization sp ²	B) N ₂ of Xe is E		C) H ₂ O XeF₄ m		D) CCI, s	D) dsp ³	E) PH ₃	E) d ² sp) : Ë	Xe F
<u>D</u> 6.	Which term A) B) C)	hydro metal	to a bor gen bor lic bond covalen	nd	nich ele	ctrons a	re share D) non E) ionid	polar cov	/ betwee valent bo	en two a ond	atoms?	11 2
7.	CCl ₄ , CO ₂ ,	PCI ₃ , F	PCI ₅ , SF	₆ Whic	h of the	e followir	ng does	NOT des	scribe ar	ny of the	se mole	ecules?
	A) linear B) octahed C) square				Ď) trigo E) tetra	nal bipy hedral	ramidal					
<u>K</u> 8.	Which is us A) Lewis s B) Hybridiz C) Ionic bo	tructure zation	explain t	he fact	that the	e four bo	D) Res	nethane, sonance rogen Bo		e equilv	alent.	
<u>B</u> 9.	For which o satisfactoril A) H ₂ S B) SO ₂ C) CO ₂	f the fo ly?	llowing i	1805	les are	resonar		tures ned D) OF ₂ E) PF ₃	cessary	to desc	ribe the	bonding
<u>A</u> 10.	Which set o in the grour A) 5, 0, 0, 1 B) 5, 0, 1, 1 C) 5, 1, 0, 1	nd state /2 /2	um num e?	nbers ca	an desc	D) 5, 1, E) 5, 2,	1, ½	outermos	t electro	ns in a	strontiu	m atom,

L 11. The species ionization en	s, B ⁴⁺ , Be ³⁺ , Li ²⁺ ,	He ⁺ , and H all	have one electro	n; which has t	he smallest	
A) B ⁴⁺	B) Be ³⁺	C) Li ²⁺	D) He ⁺	E) H	Least protons	
12. Which of the A) Li ₂	e following molec B) B ₂	ules has the si C) N ₂	rongest bond bet D) O ₂	ween the aton E) F ₂	ns?	
13. Which of the A) Cl \	e following is NO	T isoelectronic C) Ar (%	with the others?	E) Si ⁴⁻ (
14. Which of the	Nov.		c radius for its mo	75	found ion?	
15. Using the fo	llowing bond ene	rgies, estimate	the heat of comb	Dustion for one	e mole of acetylene	2
U ₂ ⊓ ₂	+ 5/2 O ₂	$2CO_2 + H_2C$			0 k 2 C-1	
1-C=C-H+20=0	Bon		Bond Energy	(kJ/mol)	Break 1 C	= (
↓	C <u>=</u> C -		839 413		+ 50	1
0= C= 0 + 0	0=	0	495		14 (3
20 L	O -		467 799		form of	0
۸) مامورون		14	700			
A) 1228 kJ B) -1228 kJ				447 kJ 365 kJ		
C) -447 kJ			_, .	000 Kg		
L 16. In which cas	e(s) is (are) the b	ond polarity co	orrect?			
	I. δ+ ⊢	I − F δ− Na − S δ− /				
		Na – S δ– V Br – Cl δ– ✓				
	IV. δ+	P – O δ– 🗸				
A) I only			D) I, I	I, and IV only		
B) I and II only C) II and III or		- 2 A M a		are correct		
A	,					
17. Which of the	following statem	ents is (are) in	correct?			
	The hybridizati	on of boron in	BF ₃ is sp ² \checkmark			
11. III.	The molecule 3 The bond orde	$r ext{ of } N_2 ext{ is 3 } \checkmark$	ar 🗸			
IV. A) all four sta	The molecule I atements are corr	HCN has two p	i bonds and two s	sigma bonds 🗸	/	
B) II is incorr	ect	eci				
C) I and IV a D) II and III a						
	IV are incorrect					
U X						

AP Test Chapters 7-9 October 2010	Name:
18. Complete the Lewis structure for the following molecular bonds (all atoms have a formal charge of zero):	ule by adding in lone pairs and additional
This molecule has 13 sigma and 3 pi bonds.	H H 'O: H-C-C-C-C≡N: H-CH ₂
A) 4, 5 B) 6, 3 C) 11, 5	D) 13, 2 E) 13, 3
19. The melting point of MgO is higher than that of NaF. E which of the following? I. Mg ²⁺ is more positively charged than Na ⁺ II. O ²⁻ is more negatively charged than F	Explanations for this observation include
III. The O ² ion is smaller than the F ion (A) II only (B) I and II only	(D) II and III only

20. Which of the following species is NOT paramagnetic in its ground state? A) O₂ B) O₂⁺ D) NO

(C) I and III only

E) F₂

(E) I, II, and III

Part 2: Short Answer

- 1. (20 pts) Use the principles of atomic structure and/or chemical bonding to explain each of the following. In each part, your answer must include references to both substances.
 - a. Account for the difference between the radius of the Ca atom, which is 0.197 nanometers, and the Ca²⁺ ion, which is 0.099 nm.

The Ca atom and Ca2+ ion both have 20 protons, however the ca atom has 20 electrons whereas the Ca2+ ion test has only 18 e-. The electrons lost when the atom becomes an ion are those in the valence shell, The fewer the electrons, the were tightly the nuclew is able to hold outo the renairing electrons.

b. Account for the fact that the first ionization energy of Mg is 738 kilojoules per mole, while that of Al is 578 kJ/mol.

Mq: 1522522p6352 A1: 1522522p63523p1 It requires less energy to remove the overmost electron from Al because the 3p electron is being shielded from the nucleus by all the electrons (12 of thus) in the 1s through 3s sublowls. The outermost e- in My are in the 3s sublowls. therefore they are shielded only by 10 inner electrons making them exister to be renoved.

c. The bond lengths in SO₃ are all identical and are shorter than a sulfur-oxygen bond in a

E 11. The species	, B ⁴⁺ , Be ³⁺ , Li ²⁺ , H	le ⁺ , and H all ha	ave one electron;	which has th	e smallest
ionization ene A) B ⁴⁺	ray2	C) Li ²⁺		E) H	Least protons
12. Which of the A) Li ₂	e following molecu B) B ₂	les has the stro C) N ₂	ngest bond betwe D) O ₂	een the atom E) F ₂	s?
13. Which of the A) Cl V	e following is NOT B) Sc ³⁺ (isoelectronic w C) Ar (%	ith the others? D) V ⁴⁺ 19	E) Si ⁴⁻ (1	
A) Bath Ste	B) Mg + 2 12 p	C) N 3 3 10e-	radius for its most D) O - 2	E) K+ 146	
C ₂ H ₂	llowing bond ener + 5/2 O ₂ →	gies, estimate t 2CO ₂ + H ₂ O	the heat of combu	stion for one	mole of acetylene. Brunk 2 C-H 7 C=C 737.5 + 52 0=0 3190 7 7 0 11 934
H-C=C-H+20=0	Bone	d	Bond Energy (kJ/mol)	DILA. 1 CEC 1237.3
	C <u>= (</u>		839		\$ 0=0 3190
N H	C-1		413		2=0 934
20=C=0 + 0,4	0 = 0		495 467		Corn 4 0 M
2	O-H C=O		799		2
A) 1228 kJ B) -1228 kJ C) -447 kJ			D) +4 E) +3	47 kJ 65 kJ	
16 In which ca	se(s) is (are) the b	ond polarity co	rrect?		
16. III WINGIT 64	I. δ+ ⊢	1-Fδ- √			
	II. δ+	Na – S δ– 🗸			
# ₂₀	III. δ+ IV. δ+	Br – Cl δ– P – O δ–			
***			וו עם	, and IV only	
A) I only B) I and II or	nlv	•		are correct	
C) II and III o					
3) 1. 3.13 1.1	-0				
A 17. Which of th	ne following staten The hybridiza	nents is (are) in tion of boron in XeF₄ is nonpol	BF₃ is sp ² ✓		
îi.	The bond ord	er of N ₂ is 3 \checkmark			
IV.	The molecule	HCN has two p	oi bonds and two s	sigma bonds	V
	statements are co	rrect			
B) II is inco					
	are incorrect are incorrect				
	d IV are incorrect				
U compared the compared to the					

d. The H-O-H bond angle in H₂O is smaller than the H-N-H bond angle in NH₃.

HOTH H-N-H Both are sp³ hybridized, but H₂O has two lone pairs of e⁻ on the central atom. These repel the bonded pairs more than the single lone pair of the N in NH₃ resulting in a 6 lightly smaller angle in H₂O

e. The carbon to carbon bond energy in C_2H_4 is greater than it is in C_2H_6 .

Let $C = C_1H_4$ contains a C - C double bond which is stronger than the single C - C bond found in C_2H_6 .

f. The SO₂ molecule has a dipole moment, whereas the CO₂ molecule has no dipole moment. Include Lewis (electron-dot) structures in your explanation.

0::5:0: SOz is bent (5p2 hybridization) resulting in an assymmetrical notecute and a displacement of charge.

O:: C:: O CO2 is linear (sp hybridization) resulting in a symmetriall charge distribution

g. Phosphorus forms the fluorides PF3 and PF5 whereas nitrogen only forms NF3.

PF3 is sp3 hybridized.
PF5 is dsp3 hybridized
NF3 is sp3 hybridized.

NF5 cannot form because this would require dsp3 hybridization around the Natom. This cannot occur because the valence shell of N is 2 which does not contain a d-sublevel.

h. A sample of nickel is attracted to a magnetic field whereas a sample of zinc is not.

Ni: [AC] It 111111 L Wi has two unpaired electrons which makes it

Ni: [Ar] The Thill I Paramagnetic

Zn: [Ar] 1) 11111 11 11 (Zn has all paired electrons raking it diamagnetic

i. Magnesium iodide has lower lattice energy than magnesium chloride.

LE= kQ,Qz
Q, and Qz are ion changes. I is distance between nuclei.

Both MgIz and MgClz have the same ion changes, but the radius of the CI is smaller than the radius of the I.

This makes the lattice energy for MgClz greater than Mg Iz

j. Iron commonly forms both Fe²⁺ and Fe³⁺ ions.

Fe: [Ar] Il 11111 when ions form, atoms generally lose their valence electrons. If iron did this it would have Fetz

Iron also sometimes loces the e-with the opposite spin in the diblock because it is not being held very strengly due to the repulsion between the e-sharing the orbital. This results in Tet3

2. (6) Find the heat of reaction for the following reaction:

Na (s) +
$$\frac{1}{2}$$
 Cl₂ (g) \rightarrow NaCl (s)

Given:* Lattice energy of NaCl = -828 kJ/mol 1^{st} lonization energy of Na = 496 kJ/mol 2^{nd} lonization energy of Na = 4560 kJ/mol 1^{st} lonization energy of Cl = 1251 kJ/mol 2^{nd} lonization energy of Cl = 2297 kJ/mol Electron affinity of Na = -53 kJ/mol Electron affinity of Cl = -349 kJ/mol Heat of sublimation for Na = 101.6 kJ/mol Heat of sublimation for Cl₂ = 111.5 kJ/mol Bond energy Cl₂ = 243 kJ/mol

*please note that you will not necessarily use all of this information.

3. (6) Draw three reasonable resonance structures for the polyatomic ion, OCN. (C is the central atom) For each structure, assign formal charges to each atom. Make a statement about stability of each of your structures based on the concept of formal charges.

Tetrahedral:

B: A:B all bonded

B: A: B 4 banded, lunbanded

Square planar

AB 4 banded, I un banded

I pt each sletch corresponds w/name lpt each explanation lpt each example lpt each hybridization